多电极电弧焊接与增材制造技术的现状与未来趋势

胡青松 ,  闫朝阳 ,  蒋凡 ,  陈树君

材料工程 ›› 2025, Vol. 53 ›› Issue (05) : 17 -34.

PDF (11424KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (05) : 17 -34. DOI: 10.11868/j.issn.1001-4381.2024.000697
熔丝增材制造专栏

多电极电弧焊接与增材制造技术的现状与未来趋势

作者信息 +

Current status and future trends of multi- electrode arc welding and additive manufacturing technology

Author information +
文章历史 +
PDF (11697K)

摘要

针对成型件高精度控形与低损伤控性的实现需求,以及在增加熔敷量的同时达到热源热、质、力深度解耦的目标,多电极电弧焊接/增材技术已逐渐成为学术界与工业界共同关注的热点。本文对多电极电弧工艺的发展历程进行了系统综述,全面梳理了多电极电弧焊接与增材领域的前沿研究成果,并对多电极电弧中不同类型的耦合电弧进行了分类总结,多电极电弧系统通过引入多个电极,实现了对耦合电弧热质力传输过程的更精细调控,有助于优化沉积层的成形质量,降低缺陷,提高制造精度。强调了不同类型多电极电弧工艺在热源和电极排布方式,热质力解耦传输特性的区别,总结了焊接过程参数对耦合电弧稳定性的影响机制,最后,本文提出了适用于电弧熔丝增材制造领域的多电极电弧特性,探索复合材料构件的高性能制造,搭建新型多电极电弧技术的工艺数据库,为耦合电弧和多电极电弧增材制造技术的应用推广提供有价值的参考。

Abstract

Addressing the need for high-precision shape control and low-damage property control in formed parts, as well as the goal of achieving deep decoupling of thermal, mass, and force aspects of the heat source while increasing the deposition rate, multi-electrode arc welding/additive manufacturing (AM) technology has gradually become a focal point of interest in both academia and industry. This paper systematically reviews the development history of multi-electrode arc processes, comprehensively summarizes the cutting-edge research achievements in the field of multi-electrode arc welding and AM, and categorizes and summarizes different types of coupled arcs in multi-electrode arcs. The multi-electrode arc system achieves finer control over the thermal-mass-force transfer process of the hybrid arc by introducing multiple electrodes, which helps optimize the forming quality of deposited layers, reduce defects, and improve manufacturing precision. This study highlights the differences in heat source and electrode arrangement configurations among various types of multi-electrode arc processes, and their distinct thermal-mass-force decoupling transfer characteristics, summarizes the influence mechanisms of welding process parameters on the stability of hybrid arcs. Finally, this paper proposes multi-electrode arc characteristics suitable for wire arc additive manufacturing, explores the high-performance manufacturing of composite components, and establishes a process database for novel multi-electrode arc technologies, which provide valuable insights for the application and promotion of coupled arc and multi-electrode arc AM technologies.

Graphical abstract

关键词

多电极电弧 / 电弧增材制造 / 热质传输 / 电弧特性 / 成形控制

Key words

multi-electrode arc / wire arc additive manufacturing / heat-mass transfer / arc characteristic / forming control

引用本文

引用格式 ▾
胡青松,闫朝阳,蒋凡,陈树君. 多电极电弧焊接与增材制造技术的现状与未来趋势[J]. 材料工程, 2025, 53(05): 17-34 DOI:10.11868/j.issn.1001-4381.2024.000697

登录浏览全文

4963

注册一个新账户 忘记密码

电弧熔丝增材制造与电弧焊,均依托电弧作为热能源泉,遵循熔化至凝固的基本物理过程,在材料工程领域内扮演着不可或缺的角色。金属增材制造依托于计算机精密的路径规划算法,将三维数字模型切片后,通过行走机构(涵盖机器人与机床)与打印硬件设备的协同作业,实现从离散到堆积的飞跃1。金属增材利用逐层累加材料的方式,自由地构筑出三维零件的形态,突破了传统减材制造(如切削、铣削)与等材制造(如锻造、铸造)在加工自由度上的局限2,更赋予了加工零件以高度的几何形状自由度和定制化加工的小批量灵活性3。在广泛的增材制造领域中,以电弧为热源的WAAM凭借其高沉积速率、低廉的设备成本(无需真空环境)、卓越的材料利用率及成型零件尺寸的无限制性,在制造大型金属结构件方面展现出独特的环境友好型优势,日益受到工业制造领域的瞩目。
传统电弧增材面临的挑战亦不容忽视4-5。熔池体积庞大且约束较弱,对外界干扰的抵抗能力不足,导致制造精度波动;随着沉积层高度的增加,热扩散形式和本质发生变化,加之电源输出调节能力的局限,沉积偏差问题频发,空间遗传性显著。其根本原因是现有电弧增材多为传统焊接热源的直接应用,热源在传热、传力及传质方面存在深度耦合,难以实现精准控制。因此,热质力的受控解耦与精准传输成为制约增材制造发展的关键科学难题。
近年来,多电极电弧熔丝增材制造技术异军突起,打破了传统热源在传热、传质及传力方面的固有桎梏。当前多电极电弧增材仍基于传统电弧的工作模式,尚未从根本上革新成弧机理以满足不同沉积层的热质需求,且多电弧的耦合作用仍受限于原有工艺框架,对沉积层的形性控制产生非预期影响,图1为电弧热源形式的拓扑图。本文旨在综述多电极电弧焊接/增材技术的形式及其在焊接与金属增材制造领域的最新进展,涵盖并联热源的多电极电弧技术、分流主弧电流的多电极电弧技术以及多电弧分工式的多电极电弧技术,在此基础上,展望多电极电弧焊接与增材的未来发展趋势。

1 并联式多电极电弧

在传统的单丝单弧沉积技术中,由于单电弧的能量密度有限,焊丝的熔敷效率相对较低。若简单地增加焊接参数以提高效率,则会导致工件热输入增大,同时电弧力增强,影响沉积层的成形质量6。为克服这一局限,并联式多电极电弧应运而生,该热源在不牺牲沉积层质量的前提下,显著提升沉积效率。典型代表包括plasma-MIG、tandem、T-TIG和TIG-MIG等,如图2表1所示7-29,多热源均与工件相连接(以工件作为多热源的共电极端),流经工件端的电流为各热源输出电流的总和,通过并联多个热源,利用多丝或多电弧耦合以达到提升沉积效率或稳定电弧的作用,展现出独特的热质力传输特性30

1.1 过程稳定性控制

并联式多电极电弧工艺通过多热源多焊枪的耦合,显著改变了传统单弧的热质力传输特性。随着焊接系统复杂度的提升,相邻电弧间的相互作用可能导致沉积过程不稳定,引发熔化/渗透过熔/不足、沉积缺陷等问题,增加修复成本31,大量研究工作认为电极角度32、电极间距33、保护气成分34-35、焊枪方向36、多热源焊接参数协同不匹配37-38等因素均会引发电弧干扰现象。因此,揭示并联式多电弧耦合的物理机制,优化电极空间分布,确定最佳焊接参数组合,并实现并联式多焊接热源的协同控制,是实现高效高质量沉积的关键。

通过电磁物理学原理,两条平行且载有同向电流的导线会相互产生磁场作用。图33639双弧干扰现象原理示意图,在tandem工艺中,流经两焊丝的同向电流产生电磁场,由于两焊丝间距较短,则产生了电磁吸引力,两电弧出现了相互偏移的现象。吴开源等根据牛顿运动学理论与伯努利定律推导出了电弧偏移量与各参数之间的关系39

lT=12·FTρTt2=12·jT×BTρT·LT2νT2=12·ITπrT2·μ0IL2πDρT·LT2νT2=ILLT22ITD

式中:lT为前端电弧偏移距离;IT为前端电弧电流;IL为后端电弧电流;D为两电极之间的距离。式(1)揭示了电弧偏转距离与两电极距离、前后端电弧电流比例以及弧长的相关性。在脉冲tandem中,电弧刚度在脉冲基值阶段较低,易受到另一电弧电磁力的吸引而发生过度拉长,这是导致电弧中断的主要原因38。通过调整电源模式、焊枪角度以及采用异步脉冲等方式,可有效提高电弧的稳定性和沉积层成形质量40

为提高熔覆效率而不增加工件热输入,国内外研究者提出双弧一体冷丝工艺12和hybrid-tandem工艺14,通过引入冷丝或热丝来限制熔池高温区域面积或降低电弧周围电磁力强度,从而实现稳定的沉积过程。三丝GMAW工艺进一步增大了熔覆效率,通过脉冲同步控制实现三个电弧的稳定燃烧10。以上所提到的工艺均在高速焊接领域得到了广泛应用。plasma-MIG耦合焊接工艺结合等离子弧的高熔深和MIG弧的强填充能力,有效提高了沉积层成形质量13。而外置钨极等离子弧焊则通过添加外置钨极实现自由弧与等离子弧的耦合,提高了等离子弧焊过程中的锁孔稳定性27,为中厚板焊接领域提供了新型的焊接工艺。

2.2 电弧特性

图41020262841-42为不同多电极电弧工艺中的电弧行为变化。在多电极电弧中,由于引入多台热源,多电弧在非均衡磁场的作用下产生强烈的交互反应,且在不同的电极连接形式下,耦合电弧的电弧行为也并不相同,形成了具有不同特征和形态的耦合电弧43

在T-TIG中,耦合电弧形态在静态或低速焊接条件下并非轴中心对称分布,而是向焊接方向后偏移41。随着耦合电弧行为的改变,电弧内的温度分布和等离子体的运动速度分布也发生变化44。双电极中采用不同的电流、电极间距以及保护气成分均会对电弧行为产生强烈影响45。多热源采用同步或异步脉冲模式同样会影响电弧行为,导致电弧对工件表面的传热和熔池的流动模式产生差异10

在plasma-MIG中,两电弧的相互作用分散耦合电弧整体的电流,提高了耦合电弧的稳定性46,而在TIG-MIG中,附加的洛伦兹力改变了MIG弧和TIG弧的偏转角度,增大了作用在工件上的热能长宽展弦比20。在外置钨极等离子弧焊中,由于焊枪侧端电弧(定义为自由弧)电流限制在40 A以下,自由弧的刚度较低,在电磁力的作用下完全被等离子主弧吸收27-29

多电极电弧通过各类热源相互耦合可突破传统单弧热源向工件端热质力传输耦合的限制,冷雪松等647建立电弧力测量系统,测量了T-TIG工艺的电弧力输出特性,在相同的焊接电流下,即在工件热输入相同的情况下,T-TIG产生的电弧压力更小。由于电磁力影响了耦合电弧的等离子体运动特性,阳极表面的电弧压力分布也不是旋转对称的44。随着电极间距的增大,电弧力输出随之减小,这是由于电极间距越长,两电弧的相互作用导致电弧向焊枪轴心位置发生严重偏转,从而导致较低的电弧力输出48,然而电弧力输出并不是越小越好,严重的等离子体偏转会降低焊接过程的稳定性。焊接电流是影响电弧等离子体运动速度和电弧力的主要参数,王宇鑫等49采用数值模拟的方式指出在tandem中,电弧等离子体速度和电弧压力均随着电流的增大而升高,且作用在工件端的电弧力最大值分布在两焊丝中间位置。以上两工艺在类似的电弧热输入情况下,具有比单弧更低的电弧压力。plasma-MIG中,由于等离子弧的加入,耦合电弧在焊丝端位置的电流密度较低,从而降低了电弧力输出,电弧压力和传热的分布范围更广,耦合电弧的电弧压力取决于两电弧的耦合效应。

并联式多电极电弧技术通过不同热源间的耦合作用,打破了传统单弧热源在热质力传输上的局限。plasma-MIG和TIG-MIG等工艺通过调整电弧间的相互作用和电磁力,优化了电弧稳定性和热能分布,降低了电弧压力,同时实现了更均匀的熔滴过渡和热传导。

1.3 熔滴过渡

熔滴过渡作为沉积过程的核心环节,对沉积层的成形及几何特征具有决定性影响。为深入探究此过程,实验观测与数值模拟成为重要手段。Wu等50研究发现,在双脉冲tandem焊接中,熔滴无论在强弱电流周期内熔滴均以一脉一滴规律过渡;而在异步DC-AC tandem中,DC脉冲峰值的大电流增强了熔滴过渡的稳定性,但电弧干扰会引发飞溅51。使用三元保护气时,熔滴过渡模式随气体成分变化:CO2含量增加使尾丝过渡从射流转为射滴,氦气增加则使前丝过渡从射滴转为射流52。在MIG及其多电极变体中,电弧电参数随弧长变化。双弧一体冷丝焊接中,熔滴过渡模式受电弧电压影响显著:低电压下为多脉一滴,电压升高转为一脉一滴,电压继续增大则再次出现多脉一滴,这是由于弧长增加限制了弧根扩展12。热丝tandem中,中间焊丝的反极性电流产生感应磁场,影响前后焊丝的熔滴过渡。为保持稳定性,中间焊丝电流需控制在80 A以下19。在plasma-MIG中,等离子体输送到焊丝尖端,金属蒸气提高电导率,导致电弧附着分散,降低了焊丝颈部的洛伦兹力,使熔滴分离延迟、直径增大、过渡频率降低至MIG的80%22。采用脉冲电流时,MIG电流低于140 A时熔滴为多脉一滴,随着等离子弧电流增大,过渡频率提高;MIG电流超过140 A且等离子弧电流低于180 A时,为射流过渡;等离子弧电流超过180 A时,转为射滴过渡。

在并联式多电极电弧焊接/熔丝增材制造研究中,国内外学者用实验观测与数值模拟,深入探索了工艺控制、参数优化、电弧特性及熔滴过渡机制。通过精细调控焊接电流、电弧电压等关键参数,特别是在热丝tandem焊接中控制中间焊丝电流,实现了沉积层成形质量与几何精度的显著提升。同时,也揭示了多电极电弧系统中电弧相互作用、电磁力对电弧稳定性和热能分布的影响,以及不同工艺条件下熔滴过渡模式的变化规律。采用三元保护气和调整电弧电参数,进一步优化了熔滴过渡模式。上述热源在熔覆速度、焊接效率及成形控制等方面表现出突出的优势,但都是基于传统电弧的工作模式,以熔池为耦合载体的并行简单叠加。虽在一定程度上调整了电弧的热力输出,但受控于传统电弧在热力输运及熔丝传递方面的固有约束,很难保证热源的热质力匹配,发挥出多电极电弧在WAAM中的优势。

2 分流式多电极电弧

与单丝单弧焊相比,并联式多电极电弧焊仅仅是增加电弧能量密度熔化单根或多根丝材以提高熔覆速率,电弧对工件端传热与传质在本质上仍是耦合的。为了实现焊接热源的传热传质的解耦控制,各国学者提出了热质解耦的多电极电弧技术(分流式多电极电弧),以更好地调控电弧热质传输,满足沉积层热质需求。

图5为总结的分流式多电极电弧类型,包括三丝间接电弧、旁路耦合双丝间接电弧、旁路耦合PAW等,表253-77展示了不同分流式多电极电弧工艺的电极排布方式,分流式多电极电弧技术通过采用多热源或多电极形式构件主旁路电弧,利用旁路电弧分流流经主弧的电流,实现了熔覆率与工件端热输入的独立控制,确保了在不增加工件端热输入的前提下增大沉积效率,从而有效降低焊接热影响区和控制焊接变形。

2.1 过程稳定性控制

在三丝间接电弧焊中,热源输出模式需为直流输出和脉冲电流输出结合的形式以稳定焊接过程78,多焊丝的排布方式79、丝间角度及间距80同样对焊接过程稳定性造成影响。在旁路耦合双丝间接电弧中,需要限制阴极焊丝送丝速度为阳极焊丝送丝速度的40%~50%以避免两焊丝发生接触产生短路爆炸55。在arcing-wire中,磁偏吹、旁路电弧的弧根位置和保护气流量引起了电弧偏转,而旁路电弧的电压是影响焊接过程稳定性的关键因素81。在双丝动态三电弧中,M弧的存在促进了熔滴过渡的过程,但需将主弧的电压控制在适宜的值范围内,保证焊接过程的稳定71。在DE-GMAW中,陈树君等82研究了焊枪高度对DE-GMAW和arcing-wire工艺稳定性的影响,需要稳定控制热源的电压输出(及弧高在焊接过程中的一致性)以保证过程稳定性。

2.2 电弧特性

图6557281-83为不同多电极电弧工艺的电弧行为图像,在三丝间接电弧中,在多热源的洛伦兹力的作用下两只分离的电弧逐渐耦合成单个倒锥形电弧83,中间焊丝的电流密度是两边焊丝的两倍,电弧能量密度进一步提升。在旁路耦合双丝间接电弧中,由于两焊丝的送丝速度不同,阳极焊丝与工件端主弧与双丝间接电弧交替燃烧55,此工艺的提出解决了双丝间接电弧工艺熔滴过渡过程不稳定的问题,提高了无缺陷成形情况下的最大焊接速度,其最高焊接速度可达4.2 m/min。在分体等离子弧中,由于焊丝电流增加引起的阳极产热可以使传递到焊丝的总功率增加50%或更多,同时钨电极上流过的电流保持恒定,可保证在工件端热输入保持恒定的情况下调整传质过程75,即焊丝熔化速度和焊接熔透是相互独立的,此效果同样在arcing-wire64、DE-GMAW67中出现。在旁路耦合PAW中,随着旁路电流的增加,电弧先收缩后扩展,并且相应的熔滴直径和传输周期发生变化62。在双丝动态三电弧焊接过程中,至少存在两个电弧,动态地形成两种不同的电弧形状及其各自的镜像形状:“μ”形和“Γ”形72。以上方式的多电极电弧通过旁路分流主弧电流的形式,实现了工件端热输入与焊丝熔化率的解耦控制。

2.3 熔滴过渡

在分流式多电极电弧中,多焊丝排布位置与旁路电弧力的作用对熔滴过渡产生影响。在三丝间接电弧中,不同的焊接参数下可出现三丝短路过渡(SCT)、主焊丝射滴过渡-两侧焊丝大滴过渡(PGT)、主焊丝射流过渡-两侧焊丝射滴过渡(SPT)与三丝射流过渡(SST)四种不同的熔滴过渡模式53,SPT与SST过渡模式得到的沉积层成形质量最高。在旁路耦合双丝间接电弧中,阴极焊丝以大滴过渡模式进入熔池,阳极焊丝的熔滴过渡模式受到阴极焊丝的送丝速度影响,随着阴极焊丝送丝速度的增大,阳极焊丝的熔滴过渡模式为射流过渡、短路过渡和大滴过渡55,随着阴极焊丝电流的增加,阳极熔滴对阴极焊丝的排斥力也增加57。在arcing-wire中,在焊接参数保持恒定的情况下,随着送丝速度的增大,熔滴过渡模式从周期性搭桥过渡转变至完全搭桥过渡63,与上述的工艺存在区别,原因为在TIG中,作用在熔滴上的电磁力较小,熔滴在触碰工件前并不能产生颈缩实现过渡,此种熔滴过渡模式产生飞溅的可能性较低,但过渡频率较低。

在旁路耦合PAW中,通过协同控制主路电流和旁路电流,可改变作用在熔滴上的力,过渡模式从搭桥过渡转变为射滴过渡再转变至射流过渡84。在DE-GMAW中,旁路电弧的存在增大了阳极焊丝电流传导区的角度,增大了作用在熔滴上的电磁力,降低了熔滴出现射流过渡的电流临界值66

分体等离子弧等工艺通过增加焊丝电流,提高传递到焊丝的总功率,实现热输入与焊丝熔化率的解耦控制。熔滴过渡受焊丝排布、旁路电弧力及焊接参数影响,呈现多种过渡模式,其中射流与射滴过渡模式沉积层质量最佳。通过协同控制主旁路电流,可改变作用在熔滴上的力,进而调控过渡模式,旁路电弧的引入还降低了熔滴射流过渡的电流临界值,进一步优化了沉积过程。分流式多电极电弧,通过优化热源输出模式、焊丝排布与角度、送丝速度比等参数,可确保焊接过程的稳定性,有效地改善了传统电弧在热质力之间的固有搭配,实现了传质与母材热输入之间的解耦控制,在电弧增材领域有较好的应用前景,但主旁路电流协同控制及沉积工艺的控制较难。

3 分工式多电极电弧

分工式电弧采用双电弧或交替电弧的模式分别控制传热与传质过程,可进一步实现电弧热质解耦传输的精确控制,如图7所示,包括交叉耦合电弧、斜交耦合电弧、双丝双脉冲电弧、自适应分流交替电弧以及旁路耦合变极性等离子弧,表385-96展示了不同分工式多电极电弧工艺的电极排布方式,热质传输精确控制可保证在增材制造过程中沉积层成形精度,最大程度降低铣削等后处理操作,此类型多电极电弧技术均广泛应用于电弧增材制造领域。

3.1 电弧特性

针对分流式多电极电弧以旁路电弧分流主弧解耦热质传输的方式,学术界又提出了分工式多电极电弧,图88593-9496不同工艺的电弧行为图像,同样在非均衡磁场下出现了电弧偏转现象。交叉耦合电弧在钨电极与工件之间建立主弧,在两焊丝之间建立间接电弧,由主电弧控制工件端的热-力传输,通过间接电弧控制焊丝熔覆率,通过双电弧分工实现耦合电弧热质力传输的解耦控制87。然而由于间接电弧的感应磁场的存在导致主弧始终向间接电弧阴极偏转91,此极区现象影响了焊接过程的稳定性。为解决此问题,提高焊丝高度和两焊丝间距减小极区效应对主弧稳定性的影响85,此工艺又称为斜交耦合电弧。同时还可以采用高频交流方波作为双丝间接电弧的热源,提高变极性频率以抑制主弧的振荡现象86。在旁路耦合变极性等离子弧中,采用变极性等离子弧与VP-PMIG电弧分别控制焊接过程中的热力传输与传质,VPPA电弧主导工件端的传热,而VP-PMIG电弧主导传质过程96。刘永红97在双脉冲MIG的基础上添加了旁路焊丝,提出了旁路耦合双脉冲工艺,工件与旁路焊丝共同作为阴极,实现了工件与旁路阴极焊丝之间的动态电流分配,然而此工艺仅能通过控制阴极焊丝的送丝速度实现工件端热输入的控制,其效果较差。为解决此问题,进一步提出了新型可编程热输入工艺(PHI-WAAM),在热源阴极与工件端的通路上装有IGBT,利用可编程修改的驱动信号控制IGBT连接与中断,双丝间接电弧持续燃烧控制传质过程,阳极焊丝与工件主弧控制工件端传热94。以上两工艺中由于间接电弧的存在同样使主弧发生了偏转现象。

3.2 熔滴过渡

在交叉耦合电弧中,通过改变送丝速度实现对沉积过程中熔滴过渡模式的控制,双丝分别出现了“自由过渡-自由过渡”、“搭桥过渡-自由过渡”和“搭桥过渡-搭桥过渡”三种熔滴过渡模式,其中“搭桥过渡-自由过渡”模式下的沉积层成形最佳88。在旁路耦合变极性等离子弧、PHI-WAAM中,作用在熔滴上的电磁力提高了熔滴过渡的频率,在不同的电流比例下可自由设计熔滴滴状过渡和搭桥过渡的过渡模式。

针对分流式多电极电弧的局限性,学术界提出了分工式多电极电弧,通过交叉耦合和旁路耦合等方式实现热质力传输的解耦控制。但主弧偏转现象影响了焊接稳定性,研究者们通过调整焊丝高度、间距及采用高频交流方波等策略进行改进。新型可编程热输入工艺和旁路耦合双脉冲工艺的提出,实现了电弧热源更精确的控制。在熔滴过渡方面,通过改变送丝速度、电流比例可自由设计熔滴过渡模式,提高沉积层成形质量和沉积过程的稳定性。

综上,国内外学者对电弧熔丝热源的改进已经开展了大量工作,但多数是以现有电弧热源及多能场的耦合叠加,此类热源仍存在热输入大、热力耦合严重、热力难以精确供给等不足,致使该类热源在电弧增材制造时热积累严重、熔深大、尺寸难以精准控制。故而不能简单地将传统焊接热源/传统多电极热源直接移植至电弧增材制造过程,金属构件的电弧增材制造由全焊缝堆焊构成,因此对适用于电弧增材的热源提出了一系列新的挑战。

4 自适应分流交替电弧

实现高精度的增材制造要求对金属物态及液态熔滴运动过程进行准确控制,北京工业大学提出了一种新型的电弧熔丝增材制造方法93:极性变换自适应分流交替电弧熔丝增材制造(PSSAS-WAAM)方法,原理图如图9所示。以变极性焊接电源为基础,建立三电极时序/交替导电装置,利用变极性电源的特性建立基于极性变换自适应分流的多电极交替电弧熔丝增材制造热源。

所提的热源从电弧物理特性出发,利用交替电弧和电极特性可实现精确调控电弧热质力输运、熔滴弱动量过渡等,其丝材加热、熔滴受控脱落及微元组装的过程如图10所示93。在DCEN阶段,利用阳极产热熔化丝材,利用电弧等离子体的热辐射加热基材,满足基材所需热量的同时增加熔覆率;当熔滴物态满足当前沉积层需求时,利用电极转换瞬间的冲击力实现液滴受迫脱离。在DCEP阶段,保留阴极清理基材的同时利用弧柱区的热量继续熔化丝材,并在极性转回DCEN时实现丝材熔滴弱动量过渡,并向已凝固或将要凝固的基体过渡完成微元组装。

目前,本课题组已经验证了整套焊接参数下的增材过程稳定性验证,在高送丝速度下(3.5 m/min)完成了低沉积偏差单壁墙构件的打印,通过与VPPA-WAAM相比,理论上证明了以VPPA工艺为基础进而改进的交替电弧工艺中,将焊丝作为电极的形式将原本作用在工件端的阳极产热转移到焊丝端,形成了较小的层间重熔高度,在打印相同高度的零件中,交替电弧工艺所需的打印层数更少,从而提高了结构件的打印效率。图11为VPPA与PSSAS工艺在不同焊接电流下的焊丝端与工件端传热功率、熔滴温度变化以及熔滴过渡过程图像,结论得出PSSAS工件端传热比VPPA降低约50%,焊丝端传热比VPPA增大了35%,且EN阶段焊丝端电流的引入,作用在熔滴上的电磁力促进熔滴过渡过程,可实现一脉一滴过渡模式,这是VPPA工艺所不能实现的。采用实验形式建立了交替电弧的传热模型,可满足增材过程中不同层高下的热质需求。VPPA热源的DCEN、DCEP阶段焊接参数可独立调节,利用占空比与电流的协同控制可实现交替电弧的热质传输解耦控制。

5 结束语

电弧增材制造,作为一种革新性的三维实体构造手段,以其卓越的效率与材料利用率优势,在高端装备制造业的转型升级中扮演着至关重要的角色。多电极电弧增材作为一项重要技术分支,凭借其独特的优势,在提升制造精度、效率及材料适应性方面展现出巨大潜力。本文深入探讨了焊接与电弧增材制造领域内多电极电弧技术的最新进展,聚焦于新型工艺背景下沉积层成形质量的精密控制,并明确指出,将多电极电弧技术高效应用于大型复杂结构件的快速制造,还面临众多亟待攻克的核心难题。

多电极电弧用于增材的优势主要体现在以下几个方面:

(1)增强热质传输控制能力:多电极电弧系统通过引入多个电极,实现了对电弧热质传输过程的更精细调控,有助于优化沉积层的成形质量,减少缺陷,提高制造精度。

(2)提高的沉积效率:相较于传统单电极电弧,多电极电弧能够提高电弧能量密度和送丝效率,提升沉积速度,缩短制造周期。

(3)潜在的工艺优化空间:通过调整电极配置、焊接参数等,可以实现对沉积层成形和过程稳定性的精确控制。

面临亟待攻克的核心难题包括:

(1)简化多电极电弧工艺复杂性:鉴于增材制造依赖于逐层累加的构建方式,确保增材过程的稳健性至关重要。简化工艺复杂度是降低成形缺陷发生率、最大限度减少后续修复工作的有效途径。

(2)构建全面的工艺数据库体系:针对多电极电弧工艺在增材制造中的应用已有诸多研究,但大多局限于焊接参数、电极配置对沉积层形态及过程稳定性的定性探讨。未来,应借助实验验证与数值模拟的双重手段,深入量化分析耦合电弧的热质传输特性,建立涵盖广泛焊接参数的传热传质模型,为增材过程中不同沉积层的参数优化提供数据支撑。

(3)推动复合材料构件的高性能制造:传统单弧多丝增材在面对热物理性质差异显著的金属材料时,往往面临沉积层成形不佳的挑战。利用多电极电弧技术中各电极特性的灵活匹配,有望突破这一限制,实现不同热物理特性金属材料的优化组合。

参考文献

[1]

ZHAO TYAN ZZHANG B, et al. A comprehensive review of process planning and trajectory optimization in arc-based directed energy deposition[J]. Journal of Manufacturing Processes2024119: 235-254.

[2]

王树文, 陈树君, 赵骐跃, 高强铝合金电弧增材制造的研究进展[J]. 材料工程202452(7): 1-14.

[3]

WANG S WCHEN S JZHAO Q Y, et al. Research progress in arc additive manufacturing of high-strength aluminum alloys[J]. Journal of Materials Engineering202452(7): 1-14.

[4]

TAN CLI RSU J, et al. Review on field assisted metal additive manufacturing[J]. International Journal of Machine Tools and Manufacture2023189: 104032.

[5]

郭龙龙, 贺雨田, 鞠录岩, 脉冲TIG增材制造技术研究进展[J]. 材料工程201846(12): 10-17.

[6]

GUO L LHE Y TJU L Y, et al. Progress in additive manufacturing technique based on pulsed TIG[J]. Journal of Materials Engineering201846(12): 10-17

[7]

韩启飞, 符瑞, 胡锦龙, 电弧熔丝增材制造铝合金研究进展[J]. 材料工程202250(4): 62-73.

[8]

HAN Q FFU RHU J L, et al. Research progress in wire arc additive manufacturing of aluminum alloys[J]. Journal of Materials Engineering202250(4): 62-73.

[9]

LENG X SZHANG GWU L. The characteristic of twin-electrode TIG coupling arc pressure[J]. Journal of Physics D: Applied Physics200639(6): 1120-1126.

[10]

WU D SHUANG J LKONG L, et al. Numerical analysis of arc and molten pool behaviors in high speed tandem TIG welding of titanium tubes[J]. Transactions of Nonferrous Metals Society of China202333(6): 1768-1778.

[11]

QIN GFENG CMA H. Suppression mechanism of weld appearance defects in tandem TIG welding by numerical modeling[J]. Journal of Materials Research and Technology202114: 160-173.

[12]

MARTINA FDING JWILLIAMS S, et al. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel[J]. Additive Manufacturing201925: 545-550.

[13]

XIANG TLI HWEI H L, et al. Arc characteristics and metal transfer behavior of twin-arc integrated cold wire hybrid welding[J]. The International Journal of Advanced Manufacturing Technology201687: 2653-2663.

[14]

XIANG TLI HHUANG C Q, et al. The metal transfer behavior and the effect of arcing mode on metal transfer process in twin-arc integrated cold wire hybrid welding[J]. The International Journal of Advanced Manufacturing Technology201790: 1043-1050.

[15]

XIANG TLI HWEI H L, et al. Effects of filling status of cold wire on the welding process stability in twin-arc integrated cold wire hybrid welding[J]. The International Journal of Advanced Manufacturing Technology201683: 1583-1593.

[16]

HÄSSLER MROSE SFÜSSEL U. The influence of arc interactions and a central filler wire on shielding gas flow in tandem GMAW[J]. Welding in the World201660(4): 713-718.

[17]

KIM J YVAN DLEE J, et al. The effect of a hot-wire in the tandem GMAW process ascertained by developing a multiphysics simulation model[J]. Journal of Mechanical Science and Technology202135(1): 267-273.

[18]

KIM J YLEE JLEE S H. Effect of reverse-polarity hot wire on the tandem arc welding process[J]. Engineering Science and Technology, an International Journal202236: 101168.

[19]

LEE D YLEIFSSON LKIM J Y, et al. Optimisation of hybrid tandem metal active gas welding using Gaussian process regression[J]. Science and Technology of Welding and Joining202025(3): 208-217.

[20]

KIM J YLEE D YLEE J, et al. Parameter optimization of hybrid-tandem gas metal arc welding using analysis of variance-based gaussian process regression[J]. Metals202111(7): 1087.

[21]

KIM J YPARK JJANG J, et al. Control of droplet transfer using a filler-wire in Tandem arc welding[J]. Science and Technology of Welding and Joining202126(2): 123-129.

[22]

YE DWU DHUA X, et al. Using the multi-wire GMAW processes for controlling the formation of humping[J]. Welding in the World201761(4): 649-658.

[23]

YANG TCHEN LZHUANG Y, et al. Arcs interaction mechanism in plasma-MIG hybrid welding of 2219 aluminium alloy[J]. Journal of Manufacturing Processes202056: 635-642.

[24]

TASHIRO SMAMAT S BMURPHY A B, et al. Numerical analysis of metal transfer process in plasma mig welding[J]. Metals202212(2): 326.

[25]

MAMAT S BTASHIRO SMASRI M N, et al. Application of pulse plasma MIG welding process to Al/steel dissimilar joining[J]. Welding in the World202064(5): 857-871.

[26]

KANEMARU SSASAKI TSATO T, et al. Study for TIG-MIG hybrid welding process[J]. Welding in the World201458(1): 11-18.

[27]

WU XZHAO XCHEN J, et al. Simulation of the influence of welding parameters on weld pool behavior during a TIG-MIG hybrid welding process[J]. Journal of Manufacturing Processes202279: 460-475.

[28]

HUANG JCHEN HHE J, et al. Narrow gap applications of swing TIG-MIG hybrid weldings[J]. Journal of Materials Processing Technology2019271: 609-614.

[29]

CHEN JHAN ZWANG L, et al. Influence of arc interactions on heat and mass transfer during a two-arc hybrid welding[J]. International Journal of Heat and Mass Transfer2020148: 119058.

[30]

LIU ZLIU FZHAO X. A novel arc plasma generating method by coaxial hybrid a ring arc to constraint arc: principle and progress[J]. Journal of Manufacturing Processes202282: 362-373.

[31]

QIU JLIU Z. Hybrid a free arc into constraint-arc to improve arc pressure control behavior[J]. Journal of Manufacturing Processes202164: 766-773.

[32]

GUO XLIU ZZHAO X, et al. Welding process with hybrid arc by compositing two free arcs into constraint arc[J]. Journal of Manufacturing Processes2023104: 405-417.

[33]

OGINO YHIRATA YKAWATA J, et al. Numerical analysis of arc plasma and weld pool formation by a tandem TIG arc[J]. Welding in the World201357(3): 411-423.

[34]

UEYAMA TUEZONO T, ERA T, et al. Solution to problems of arc interruption and arc length control in tandem pulsed gas metal arc welding[J]. Science and Technology of Welding and Joining200914(4): 305-314.

[35]

LIU GTANG XHAN S, et al. Influence of interwire angle on undercutting formation and arc behavior in pulsed tandem narrow-gap GMAW[J].Materials & Design2020193: 108795.

[36]

UEYAMA TOHNAWA TTANAKA M, et al. Occurrence of arc interaction in tandem pulsed gas metal arc welding[J]. Science and Technology of Welding and Joining200712(6): 523-529.

[37]

CAI XFAN CLIN S, et al. Effects of shielding gas composition on arc behaviors and weld formation in narrow gap tandem GMAW[J]. The International Journal of Advanced Manufacturing Technology201791(9/12): 3449-3456.

[38]

CAI XFAN CLIN S, et al. Optimization of shielding gas composition in narrow gap GMA welding based on response surface methodology[J]. The International Journal of Advanced Manufacturing Technology201895(5): 2405-2412.

[39]

KUMAR MQUADIR M SKUMAR S S, et al. Discrete wavelet analysis of mutually interfering co-existing welding signals in twin-wire robotic welding[J]. Journal of Manufacturing Processes202163: 139-151.

[40]

PABLO R RSOUZA DFILHO D F. Arc interruptions in tandem pulsed gas metal arc welding[J]. Journal of Manufacturing Science and Engineering2015137(1): 011004.

[41]

CHEN DCHEN MWU C. Effects of phase difference on the behavior of arc and weld pool in tandem P-GMAW[J]. Journal of Materials Processing Technology2015225: 45-55.

[42]

WU K YXIE PLIU Z, et al. Investigation of double arc interaction mechanism and quantitative analysis of double arc offset in high-power double-wire DP-GMAW[J]. Journal of Manufacturing Processes202049: 423-437.

[43]

SCALET R L FVALENZUELA R R ASPINELLI J E. Double-wire tandem GMAW welding process of HSLA50 steel[J]. Journal of Manufacturing Processes201945: 227-233.

[44]

SCHWEDERSKY M BGONÇALVES E S R HDUTRA J C, et al. Arc characteristic evaluation of the double-electrode GTAW process using high current values[J]. The International Journal of Advanced Manufacturing Technology201898(1/4): 929-936.

[45]

HAN JHAN YSUN Z, et al. Effect of plasma welding current on heat source penetration ability of plasma-GMAW hybrid welding[J]. The International Journal of Advanced Manufacturing Technology2022123(5): 1835-1844.

[46]

REIS R PSOUZA DSCOTTI A. Models to describe plasma jet, arc trajectory and arc blow formation in arc welding[J]. Welding in the World201155(3/4): 24-32.

[47]

WANG XFAN DHUANG J, et al. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D: Applied Physics201447(27): 275202.

[48]

ZHANG GXIONG JGAO H, et al. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2012113(15): 1938-1945.

[49]

ISHIDA KTASHIRO SNOMURA K, et al. Elucidation of arc coupling mechanism in plasma-MIG hybrid welding process through spectroscopic measurement of 3D distributions of plasma temperature and iron vapor concentration[J]. Journal of Manufacturing Processes202277: 743-753.

[50]

LENG X SZHANG G JWU L. Experimental study on improving welding efficiency of twin electrode TIG welding method[J]. Science and Technology of Welding and Joining200611(5): 550-554.

[51]

SCHWEDERSKY M BGONÇALVES E S R HDUTRA J C, et al. Two-dimensional arc stagnation pressure measurements for the double-electrode GTAW process[J]. Science and Technology of Welding and Joining201621(4): 275-280.

[52]

PU JWU SHU Q, et al. Effect of welding current on arc behavior in tandem GMAW[J]. International Journal of Modern Physics B201933(1/3): 1940036.

[53]

WU KCAO XYIN T, et al. Metal transfer process and properties of double-wire double pulsed gas metal arc welding[J]. Journal of Manufacturing Processes201944: 367-375.

[54]

KANG SKANG MJANG Y H, et al. Droplet transfer and spatter generation in DC-AC pulse tandem gas metal arc welding[J]. Science and Technology of Welding and Joining202025(7): 589-599.

[55]

CAI XFAN CLIN S, et al. Effects of shielding gas composition on arc characteristics and droplet transfer in tandem narrow gap GMA welding[J]. Science and Technology of Welding and Joining201722(5): 446-453.

[56]

LIU LWANG ZZHANG T, et al. Analysis of metal transfer and weld forming characteristics in triple-wire gas indirect arc welding[J]. The International Journal of Advanced Manufacturing Technology2022120(9): 6777-6788.

[57]

LIU LHU CYU S, et al. A triple-wire indirect arc welding method with high melting efficiency of base metal[J]. Journal of Manufacturing Processes201944: 252-260.

[58]

WU DAN QMATSUDA K, et al. Characteristics of bypass coupling twin-wire indirect arc welding with high-speed welding mode[J]. 2021291: 116995.

[59]

WU DAN QZHENG C, et al. Effect of bypass coupling current on corrosion resistance of twin-wire indirect arc surfacing layer[J]. Corrosion Science2020174: 108817.

[60]

ZHANG ZWU DZOU Y. Effect of bypass coupling on droplet transfer in twin-wire indirect arc welding[J]. Journal of Materials Processing Technology2018262: 123-130.

[61]

HORI KWATANABE HMYOGA T, et al. Development of hot wire TIG welding methods using pulsed current to heat filler wire-research on pulse heated hot wire TIG welding processes[J]. Welding International200418(6): 456-468.

[62]

CAO FCHEN SDU C. Investigation of hot-wire TIG welding based on the heat-conduction[J]. Energy Procedia2018144: 9-15.

[63]

UNGETHÜM TSPANIOL EHERTEL M, et al. Analysis of metal transfer and weld geometry in hot-wire GTAW with indirect resistive heating[J]. Welding in the World202064(12): 2109-2117.

[64]

MIAO YLI CZHAO Y, et al. Material properties of gradient copper‐nickel alloy fabricated by wire arc additive manufacturing based on bypass-current PAW[J]. Journal of Manufacturing Processes202283: 637-649.

[65]

HUANG JYUAN WYU S, et al. Droplet transfer behavior in bypass-coupled wire arc additive manufacturing[J]. Journal of Manufacturing Processes202049: 397-412.

[66]

WANG JLI MMA Z, et al. Cross touching behavior in arcing-wire gas tungsten arc welding[J]. Journal of Materials Processing Technology2018260: 38-47.

[67]

CHEN SZHANG SHUANG N, et al. Droplet transfer in arcing-wire GTAW[J]. Journal of Manufacturing Processes201623: 149-156.

[68]

LIU JMIAO YWANG Z, et al. Improved strength in nickel‑aluminum bronze/steel bimetallic component fabricated using arcing-wire arc additive manufacturing with alternating deposition strategy[J]. Journal of Manufacturing Processes2024111: 89-103.

[69]

LI KWU C. Mechanism of metal transfer in DE-GMAW[J]. Journal of Materials Science & Technology200925(3): 415-418.

[70]

LI KZHANG Y. Metal transfer in double-electrode gas metal arc welding[J]. Journal of Manufacturing Science and Engineering2007129(6): 991-999.

[71]

ZHANG SMA GPENG X, et al. Numerical simulation of the effects of bypass current on droplet transfer during AZ31B magnesium alloy DE-GMAW process based on FLUENT[J]. The International Journal of Advanced Manufacturing Technology201790(1/4): 857-863.

[72]

YANG DWANG GZHANG G. A comparative study of GMAW- and DE-GMAW-based additive manufacturing techniques: thermal behavior of the deposition process for thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology201791(5/8): 2175-2184.

[73]

ZHANG HSHI YGU Y, et al. Effect of different filler wires on mechanical property and conductivity of aluminum-copper joints[J]. Materials202013(16): 3648.

[74]

MA ZZHUANG MLI M. Effect of main arc voltage on arc behavior and droplet transfer in tri-arc twin wire welding[J]. Journal of Materials Research and Technology20209(3): 4876-4883.

[75]

ZHONG PLI LLIU H, et al. Arc shape and dynamic behavior of the tri-arc twin-wire GMAW process[J]. The International Journal of Advanced Manufacturing Technology2023125(3): 1633-1643.

[76]

HUANG JPAN WYANG W, et al. The influence of bypass current on metal transfer in dual-bypass gas metal arc welding[J]. Journal of Manufacturing Processes201938: 179-186.

[77]

SHI Y. Research on metal transfer in dual bypass MIG welding of aluminum[J]. Journal of Mechanical Engineering201046(20): 76.

[78]

ZHANG RJIANG FCHEN S. Power transferred to the filler wire in twin-body plasma arc welding[J]. Journal of Manufacturing Processes202162: 566-576.

[79]

CHEN S JZHANG R YJIANG F. Measurement and application of arc separability in plasma arc[J]. Welding Journal201695(6): 219S-228S.

[80]

ZHANG RJIANG FCHEN S. Comparison of energy acted on workpiece among twin-body plasma arc welding, non-transferred plasma arc welding and plasma arc welding[J]. Journal of Manufacturing Processes201624: 152-160.

[81]

FANG DSONG GLIU L. A novel method of triple-wire gas indirect arc welding[J]. Materials and Manufacturing Processes201631(3): 352-358.

[82]

FANG DLIU L. Analysis of process parameter effects during narrow-gap triple-wire gas indirect arc welding[J]. The International Journal of Advanced Manufacturing Technology201788(9): 2717-2725.

[83]

LIU LXU GLI H, et al. Continuous contact transfer behavior in bypass coupling triple-wire indirect arc welding[J]. The International Journal of Advanced Manufacturing Technology2024132(1/2): 99-111.

[84]

WANG HHU SWANG Z, et al. Arc characteristics and metal transfer modes in arcing-wire gas tungsten arc welding[J]. The International Journal of Advanced Manufacturing Technology201686(1/4): 925-933.

[85]

CHEN S JZHANG L. Effect of torch height on arc stability in divided-arc process[J]. Welding Journal201695: 47-26.

[86]

WANG ZLIU L. Physical characteristics of triple-wire gas indirect arc plasma[J]. Vacuum2023215: 112246.

[87]

MIAO Y. An investigation on droplet transfer for bypass-current wire-heating PAW[J]. Journal of Manufacturing Processes202165: 355-363.

[88]

DONG SCHEN SJIANG F, et al. Effects of inter-wire arc posture on cross-coupling arc characteristics[J]. Journal of Manufacturing Processes202052: 203-212.

[89]

ZHAO HLV TZHANG J, et al. Research on suppression of cross coupled arc oscillation behavior[J]. Journal of Manufacturing Processes2024115: 365-374.

[90]

ZHANG LSU SWANG J, et al. Investigation of arc behaviour and metal transfer in cross arc welding[J]. Journal of Manufacturing Processes201937: 124-129.

[91]

SONG XLI ZHUANG J, et al. Analysis of droplet transfer and arc swing in “TIG + AC” twin-wire cross arc additive manufacturing[J]. Metals202313(1): 63.

[92]

CHEN S JZHANG L. Stability of the cross-arc process—a preliminary study[J]. Welding Journal201594: 158-168.

[93]

ZHANG LCHEN S J. Metal transfer in the cross-arc welding process[J]. Welding Journal201695(9): 340S-356S.

[94]

DONG SJIANG FXU B, et al. Physical mechanism of polar zone phenomena in cross-coupling arc welding[J]. Journal of Manufacturing Processes202050: 440-449.

[95]

DONG SXU BLU Z, et al. Effect of plasma main arc on droplet transfer in skew-coupling arc welding[J]. Journal of Materials Processing Technology2020285: 116799.

[96]

YAN ZHU QJIANG F, et al. Mechanism and technology evaluation of a novel alternating-arc-based directed energy deposition method through polarity-switching self-adaptive shunt[J]. Additive Manufacturing202367: 103504.

[97]

MA CYAN YYAN Z, et al. Efficient manufacturing of Al-Mg alloys using controlled low heat input wire and arc additive manufacturing[J]. Journal of Materials Processing Technology2023314: 117899.

[98]

MA CYAN YYAN Z, et al. Investigation of bypass-coupled double-pulsed directed energy deposition of Al-Mg alloys[J]. Additive Manufacturing202258: 103058.

[99]

JIANG FLI CXU B, et al. Study on the decoupled transfer of heat and mass in wire variable polarity plasma arc welding[J]. Materials202013(5): 1073.

[100]

MA C. Investigation of bypass-coupled double-pulsed directed energy deposition of Al-Mg alloys[J]. Additive Manufacturing202258: 103058.

基金资助

国家自然科学基金(52205322)

国家自然科学基金委员会重点项目(52335007)

北京市自然科学基金(3242001)

高端装备机械传动全国重点实验室开放基金资助(SKLMT-MSKFKT-202324)

北京市自然科学基金-北京经济技术开发区创新联合基金(L248031)

AI Summary AI Mindmap
PDF (11424KB)

605

访问

0

被引

详细

导航
相关文章

AI思维导图

/