基于改进SVM的心音分类研究
Research on heart sound classification based on improved support vector machine
心血管疾病一直是威胁人类生命健康的重大因素,如果能将人类心音信号中蕴含的病理信息精准分类,则对疾病的诊断和控制会有很大的帮助.首先,采用粒子群优化算法对传统的支持向量机算法进行优化,提出1个二分类器模型,初级分类器是由基于Stacking方法融合3个算法Adaboost、RF和PSOA-SVM构成的分类器,次级分类器为LR模型;其次,利用改进后的灰狼优化算法寻找SVM最优参数组合得到新分类器模型;最后,利用心音数据集对两个分类器模型进行实验分析,通过实验证明这2种模型都表现出优秀的分类效果.
支持向量机 / PSO / GWO / Stacking / 心音分类
support vector machine / PSO / GWO / stacking / heart sound classification
/
〈 |
|
〉 |