Objective To minimize variations in treatment outcomes of L5/S1 percutaneous intervertebral radiofrequency thermocoagulation (PIRFT) arising from physician proficiency and achieve precise quantitative risk assessment of the puncture paths. Methods We used a self-developed deep neural network DWT-UNet for automatic segmentation of the magnetic resonance (MR) images of the L5/S1 segments into 7 key structures: L5, S1, Ilium, Disc, N5, Dura mater, and Skin, based on which a needle insertion path planning environment was modeled. Six hard constraints and 6 soft constraints were proposed based on clinical criteria for needle insertion, and the physician's experience was quantified into weights using the analytic hierarchy process and incorporated into the risk function for needle insertion paths to enhance individual case adaptability. By leveraging the proposed skin entry point sampling sub-algorithm and Kambin's triangle projection area sub-algorithm in conjunction with the analytic hierarchy process, and employing various technologies such as ray tracing, CPU multi-threading, and GPU parallel computing, a puncture path was calculated that not only met clinical hard constraints but also optimized the overall soft constraints. Results A surgical team conducted a subjective evaluation of the 21 needle puncture paths planned by the algorithm, and all the paths met the clinical requirements, with 95.24% of them rated excellent or good. Compared with the physician's planning results, the plans generated by the algorithm showed inferior DIlium, DS1, and Depth (P<0.05) but much better DDura, DL5, DN5, and AKambin (P<0.05). In the 21 cases, the planning time of the algorithm averaged 7.97±3.73 s, much shorter than that by the physicians (typically beyond 10 min). Conclusion The multi-constraint optimal puncture path planning algorithm offers an efficient automated solution for PIRFT of the L5/S1 segments with great potentials for clinical application.
实验结果显示,对于Diliac指标,算法规划的穿刺路径平均值低于医师的规划路径,降低了约20.54%[(9.44±5.10) mm vs (11.88±6.14) mm, P<0.05]。DS1指标和Depth指标分别降低了约53.60%(P<0.001)、4.68%(P<0.001)。
对于DDura指标,算法的平均值稍高于医师的平均值,提升约1.22%[(17.44±2.38) mm vs (14.00±1.90) mm, P<0.05]。DL5、DN5、AKambin等3个指标分别提升了约12.78%(P<0.001)、8.30%(P<0.001)、14.91%(P<0.05,表8)。
2.5 算法在不同分割方法上的路径规划结果
算法在自动分割和手动分割数据上,对于DDura、DL5、DN5、Depth和AKambin等5个指标,两种分割方法的差异无统计学意义(P>0.05)。但是对于Diliac指标,自动分割数据比手动分割数据低约20.13%[(7.54±5.54) mm vs (9.44±5.10) mm, P<0.05]。对于DS1指标,自动分割数据比手动分割数据高约84.48%(表9)。
2.6 算法穿刺路径规划的时间结果
算法在自动分割数据上的平均规划时间相较于手动分割数据存在约0.52 s的增幅,但两者差异无统计学意义[(8.49±3.05) s vs (7.97±3.73) s,P>0.05]。算法的规划时间远短于医师普遍所需的10 min。
UcarD, DumanS, BayramY, et al. Extruded disc herniations are experienced earlier by inactive young people in the high-tech gaming era[J]. J Med Life, 2021, 14(3): 402-7.
MartinMD, BoxellCM, MaloneDG. Pathophysiology of lumbar disc degeneration: a review of the literature[J]. Neurosurg Focus, 2002, 13(2): E1.
[5]
BeyazSG, ÜlgenAM, KayaB, et al. A novel combination technique: three points of epiduroscopic laser neural decompression and percutaneous laser disc decompression with the Ho: YAG laser in an MSU classification 3AB herniated disc[J]. Pain Pract, 2020, 20(5): 501-9.
[6]
WeiWB, DangSJ, WeiL, et al. Transforaminal epidural steroid injection combined with radio frequency for the treatment of lumbar disc herniation: a 2-year follow-up[J]. BMC Musculoskelet Disord, 2021, 22(1): 347.
WangHW, HuangB, LiCQ, et al. Learning curve for percutaneous endoscopic lumbar discectomy depending on the surgeon’s training level of minimally invasive spine surgery[J]. Clin Neurol Neurosurg, 2013, 115(10): 1987-91.
[9]
RuettenS, KompM, GodoliasG. An extreme lateral access for the surgery of lumbar disc herniations inside the spinal canal using the full-endoscopic uniportal transforaminal approach-technique and prospective results of 463 patients[J]. Spine, 2005, 30(22): 2570-8.
[10]
JuCI. Technical considerations of the transforaminal approach for lumbar disk herniation[J]. World Neurosurg, 2021, 145: 597-611.
[11]
ScorzaD, El HadjiS, CortésC, et al. Surgical planning assistance in keyhole and percutaneous surgery: a systematic review[J]. Med Image Anal, 2021, 67: 101820.
[12]
KikinisR, PieperSD, VosburghKG. 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support[M]// Intraoperative Imaging and Image-Guided Therapy. New York: Springer, 2014: 277-89.
[13]
HuangY, YuLF, ZhangFF. A survey on puncture models and path planning algorithms of bevel-tipped flexible needles[J]. Heliyon, 2024, 10(3): e25002.
[14]
BaegertC, VillardC, SchreckP, et al. Multi-criteria trajectory planning for hepatic radiofrequency ablation[J]. Med Image Comput Comput Assist Interv, 2007, 10(Pt 2): 676-84.
[15]
BaegertC, VillardC, SchreckP, et al. Trajectory optimization for the planning of percutaneous radiofrequency ablation of hepatic tumors[J]. Comput Aided Surg, 2007, 12(2): 82-90.
[16]
SeitelA, EngelM, SommerCM, et al. Computer-assisted trajectory planning for percutaneous needle insertions[J]. Med Phys, 2011, 38(6): 3246-59.
[17]
LiRK, AnCY, WangSX, et al. A heuristic method for rapid and automatic radiofrequency ablation planning of liver tumors[J]. Int J Comput Assist Radiol Surg, 2023, 18(12): 2213-21.
[18]
PatilS, BurgnerJ, WebsterRJ 3rd, et al. Needle steering in 3-D via rapid replanning[J]. IEEE Trans Robot, 2014, 30(4): 853-64.
[19]
ZhaoX, GuoH, YeD, et al. Comparison of Estimation and Control Methods for Flexible Needle in 2D[C]//东北大学, IEEE新加坡工业电子分会. 第28届中国控制与决策会议论文集(下), 2016: 6.
CaiCX, SunCS, HanY, et al. Clinical flexible needle puncture path planning based on particle swarm optimization[J]. Comput Methods Programs Biomed, 2020, 193: 105511.
[22]
ShahriariN, GeorgiadisJR, OudkerkM, et al. Hybrid control algorithm for flexible needle steering: demonstration in phantom and human cadaver[J]. PLoS One, 2018, 13(12): e0210052.
[23]
VaswaniA, ShazeerN, ParmarN, et al. Attention is all you need[EB/OL]. 2017: arXiv: 1706.03762.
[24]
ÇiçekÖ, AbdulkadirA, LienkampSS, et al. 3D U-net: learning dense volumetric segmentation from sparse annotation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 424-32.
[25]
MaHP, HungYF, TsaiSH, et al. Predictions of the length of lumbar puncture needles[J]. Comput Math Methods Med, 2014, 2014: 732694.
[26]
EunSS, LeeSH, LiuWC, et al. A novel preoperative trajectory evaluation method for L5-S1 transforaminal percutaneous endoscopic lumbar discectomy[J]. Spine J, 2018, 18(7): 1286-91.
[27]
TezukaF, SakaiT, AbeM, et al. Anatomical considerations of the iliac crest on percutaneous endoscopic discectomy using a transforaminal approach[J]. Spine J, 2017, 17(12): 1875-80.
[28]
JonesMW, BaerentzenJA, SramekM. 3D distance fields: a survey of techniques and applications[J]. IEEE Trans Vis Comput Graph, 2006, 12(4): 581-99.
[29]
ZhouHY, GuoJS, ZhangYH, et al. nnFormer: volumetric medical image segmentation via a 3D transformer[J]. IEEE Trans Image Process, 2023, 32: 4036-45.
[30]
ChenLC, PapandreouG, SchroffF, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. arXiv E Prints, 2017: arXiv:
[31]
ZhouZW, SiddiqueeMMR, TajbakhshN, et al. UNet: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans Med Imag, 2020, 39(6): 1856-67.
[32]
DiakogiannisFI, WaldnerF, CaccettaP, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS J Photogramm Remote Sens, 2020, 162: 94-114.
[33]
MilletariF, NavabN, AhmadiSA. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision (3DV). Stanford, CA, USA. IEEE, 2016: 565-71.
[34]
OverleySC, ChoSK, MehtaAI, et al. Navigation and robotics in spinal surgery: where are we now?[J]. Neurosurgery, 2017, 80(3S): S86-99.
VillardC, BaegertC, SchreckP, et al. Optimal trajectories computation within regions of interest for hepatic RFA planning[J]. Med Image Comput Comput Assist Interv, 2005, 8(Pt 2): 49-56.
[37]
LiangLB, CoolD, KakaniN, et al. Multiple objective planning for thermal ablation of liver tumors[J]. Int J Comput Assist Radiol Surg, 2020, 15(11): 1775-86.
LiuYJ. Potential risk of intelligent technologies in clinical orthopedics[J]. Adv Exp Med Biol, 2018, 1093: 281-8.
[40]
ZhaoL, PangSM, ChenYF, et al. SpineRegNet: spine Registration Network for volumetric MR and CT image by the joint estimation of an affine-elastic deformation field[J]. Med Image Anal, 2023, 86: 102786.