School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China
Objective The presence of multi-scale skin lesion regions and image noise interference and limited resources of auxiliary diagnostic equipment affect the accuracy of skin disease detection in skin disease detection tasks. To solve these problems, we propose a highly efficient and lightweight skin disease detection model using an improved RT-DETR model. Method A lightweight FasterNet was introduced as the backbone network and the FasterNetBlock module was parametrically refined. A Convolutional and Attention Fusion Module (CAFM) was used to replace the multi-head self-attention mechanism in the neck network to enhance the ability of the AIFI-CAFM module for capturing global dependencies and local detail information. The DRB-HSFPN feature pyramid network was designed to replace the Cross-Scale Feature Fusion Module (CCFM) to allow the integration of contextual information across different scales to improve the semantic feature expression capacity of the neck network. Finally, combining the advantages of Inner-IoU and EIoU, the Inner-EIoU was used to replace the original loss function GIOU to further enhance the model's inference accuracy and convergence speed. Results The experimental results on the HAM10000 dataset showed that the improved RT-DETR model, as compared with the original model, had increased mAP@50 and mAP@50:95 by 4.5% and 2.8%, respectively, with a detection speed of 59.1 frames per second (FPS). The improved model had a parameter count of 10.9 M and a computational load of 19.3 GFLOPs, which were reduced by 46.0% and 67.2% compared to those of the original model, validating the effectiveness of the improved model. Conclusion The proposed SD-DETR model significantly improves the performance of skin disease detection tasks by effectively extracting and integrating multi-scale features while reducing both parameter count and computational load.
, aboutCorrespAuthor=null)}, companyList=[AuthorCompany(id=1220745062284685814, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, xref=null, ext=[AuthorCompanyExt(id=1220745062297268729, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, companyId=1220745062284685814, language=EN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China), AuthorCompanyExt(id=1220745062309851641, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, companyId=1220745062284685814, language=CN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=宁夏大学信息工程学院//宁夏“东数西算”人工智能与信息安全重点实验室//宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021)])]), Author(id=1220745063010300459, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=huanglx@nxu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1220745063215821372, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, authorId=1220745063010300459, language=EN, stringName=Lingxiao HUANG, firstName=Lingxiao, middleName=null, lastName=HUANG, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1220745063886910023, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, authorId=1220745063010300459, language=CN, stringName=黄凌霄, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=宁夏大学信息工程学院//宁夏“东数西算”人工智能与信息安全重点实验室//宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=[AuthorCompany(id=1220745062284685814, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, xref=null, ext=[AuthorCompanyExt(id=1220745062297268729, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, companyId=1220745062284685814, language=EN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China), AuthorCompanyExt(id=1220745062309851641, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, companyId=1220745062284685814, language=CN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=宁夏大学信息工程学院//宁夏“东数西算”人工智能与信息安全重点实验室//宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021)])]), Author(id=1220745064100819537, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1220745064415392356, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, authorId=1220745064100819537, language=EN, stringName=Fang DU, firstName=Fang, middleName=null, lastName=DU, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1220745064595747432, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, authorId=1220745064100819537, language=CN, stringName=杜方, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=宁夏大学信息工程学院//宁夏“东数西算”人工智能与信息安全重点实验室//宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=[AuthorCompany(id=1220745062284685814, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, xref=null, ext=[AuthorCompanyExt(id=1220745062297268729, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, companyId=1220745062284685814, language=EN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China), AuthorCompanyExt(id=1220745062309851641, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, companyId=1220745062284685814, language=CN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=宁夏大学信息工程学院//宁夏“东数西算”人工智能与信息安全重点实验室//宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021)])]), Author(id=1220745064755130995, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1220745064939680384, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, authorId=1220745064755130995, language=EN, stringName=Xinbo YAO, firstName=Xinbo, middleName=null, lastName=YAO, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1220745065195532943, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, authorId=1220745064755130995, language=CN, stringName=姚新波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=宁夏大学信息工程学院//宁夏“东数西算”人工智能与信息安全重点实验室//宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=[AuthorCompany(id=1220745062284685814, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, xref=null, ext=[AuthorCompanyExt(id=1220745062297268729, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, companyId=1220745062284685814, language=EN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China), AuthorCompanyExt(id=1220745062309851641, tenantId=1045748351789510663, journalId=1155139928303341768, articleId=1160172268929343755, companyId=1220745062284685814, language=CN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=宁夏大学信息工程学院//宁夏“东数西算”人工智能与信息安全重点实验室//宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021)])])]
任煜瀛,黄凌霄,杜方,姚新波.
基于改进RT-DETR的多尺度特征融合的高效轻量皮肤病理检测方法[J].
南方医科大学学报, 2025, 45(02): 409-421 DOI:10.12122/j.issn.1673-4254.2025.02.22
SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49.
LiXY, WangLX, ZhangL, et al. Application of multimodal and molecular imaging techniques in the detection of choroidal melanomas[J]. Front Oncol, 2021, 10: 617868.
[4]
ArgenzianoG, CatricalàC, ArdigoM, et al. Seven-point checklist of dermoscopy revisited[J]. Br J Dermatol, 2011, 164(4): 785-90.
[5]
GansterH, PinzA, RöhrerR, et al. Automated melanoma recognition[J]. IEEE Trans Med Imaging, 2001, 20(3): 233-9.
[6]
RanaM, BhushanM. Machine learning and deep learning approach for medical image analysis: diagnosis to detection[J]. Multimed Tools Appl, 2022: 1-39.
HuangHY, HsiaoYP, MukundanA, et al. Classification of skin cancer using novel hyperspectral imaging engineering via YOLOv5[J]. J Clin Med, 2023, 12(3): 1134.
ZhaoYA, LvWY, XuSL, et al. DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 16-22, 2024, Seattle, WA, USA. IEEE, 2024: 16965-74.
[14]
LiD, HanT, ZhouHT, et al. Lightweight Siamese network for visual tracking via FasterNet and feature adaptive fusion[C]//2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). March 29-31, 2024, Nanjing, China. IEEE, 2024: 1-5.
[15]
HuS, GaoF, ZhouXW, et al. Hybrid convolutional and attention network for hyperspectral image denoising[J]. IEEE Geosci Remote Sens Lett, 2024, 21: 5504005.
[16]
DingXH, ZhangYY, GeYX, et al. UniRepLKNet: a universal perception large-kernel ConvNet for audio, video, point cloud, time-series and image recognition[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 16-22, 2024, Seattle, WA, USA. IEEE, 2024: 5513-24.
[17]
ChenYF, ZhangCY, ChenB, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Comput Biol Med, 2024, 170: 107917.
[18]
ZhangH, XuC, ZhangSJ. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. 2023: 2311.02877.
[19]
ZhangYF, RenWQ, ZhangZ, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-57.
[20]
TschandlP, RosendahlC, KittlerH. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Sci Data, 2018, 5: 180161.
[21]
DingXH, ZhangXY, MaNN, et al. RepVGG: making VGG-style ConvNets great again[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 13728-37.
[22]
ZhengZH, WangP, LiuW, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proc AAAI Conf Artif Intell, 2020, 34(7): 12993-3000.
[23]
GevorgyanZ. SIoU loss: more powerful learning for bounding box regression[EB/OL]. 2022: 2205.12740.
[24]
RenSQ, HeKM, GirshickR, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-49.
[25]
WangCY, BochkovskiyA, LiaoHM. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24, 2023, Vancouver, BC, Canada. IEEE, 2023: 7464-75.
WangCY, YehIH, Mark LiaoHY. YOLOv9: learning what you want to learn using programmable gradient information[M]//Computer Vision – ECCV 2024. Cham: Springer Nature Switzerland, 2024: 1-21.
[28]
WangCC, HeW, NieY, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[EB/OL]. 2023: 2309.11331.
[29]
ZhuXZ, SuWJ, LuLW, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. 2020: 2010.04159.
[30]
ZhangH, LiF, LiuSL, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[EB/OL]. 2022: 2203.03605.
[31]
LiuSL, LiF, ZhangH, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[EB/OL]. 2022: 2201.12329.
[32]
MengDP, ChenXK, FanZJ, et al. Conditional DETR for fast training convergence[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 3631-40.
[33]
SelvarajuRR, CogswellM, DasA, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. Int J Comput Vis, 2020, 128(2): 336-59.
[34]
HeKM, ZhangXY, RenSQ, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-8.